ALGEBRA FINAL EXAMINATION

This exam is of **50 marks** and is **3 hours long**. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly. Please sign the following statement:

I have not used any unfair or illegal means to answer any of the questions in this exam.

Name:

Signature:

1. Let R be a commutative ring with 1. Let P be a *finitely generated* projective module. Show that $P^* = \text{Hom}_R(P, R)$ is a projective module.

- 2. Show that an abelian group is divisible \Leftrightarrow it is an injective \mathbb{Z} -module. 10
- 3. Let R be an Artinian ring. Show
- 3a. Every prime ideal is maximal.5
- 3b. There are only finitely many prime ideals. 5
- 4. Let $N \in \mathbb{Z}$. What is the nilradical of the ring $\mathbb{Z}/N\mathbb{Z}$? 5
- 5. Let R be a commutative ring with identity. Let

$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$

be a polynomial in R[X]. Show that

f is a unit $\Leftrightarrow a_0$ is a unit and a_i are nilpotent for all $i \ge 1$

10

6. Show that the set of zero divisors of a ring R is a union of prime ideals. (Hint: Apply Zorn's lemma to the set of ideals consisting of zero divisors.) 10